Filename Size 1. Introduction/1. Course Overview.mp4 49.6 MB 1. Introduction/10. Code Repository.html 236 B 1. Introduction/2. Artificial Intelligence.mp4 48.6 MB 1. Introduction/3. Machine Learning.mp4 67 MB 1. Introduction/4. Deep Learning.mp4 54.5 MB 1. Introduction/5. Computer Vision.mp4 43.1 MB 1. Introduction/6. Natural Language Processing.mp4 64.4 MB 1. Introduction/7. Automatic Speech Recognition.mp4 100.7 MB 1. Introduction/8. Reinforcement Learning.mp4 43.9 MB 1. Introduction/9. Pre-requisites.html 889 B 10. K-Means/1. K-Means Algorithm.mp4 60.1 MB 10. K-Means/2. Code 01 - Data Prep.mp4 18.6 MB 10. K-Means/3. Code 02 - Init Centers.mp4 65.7 MB 10. K-Means/4. Code 03 - Assigning Points.mp4 75.6 MB 10. K-Means/5. Code 04 - Updating Centroids.mp4 59.1 MB 10. K-Means/6. Code 05 - Visualizing K-Means & Results.mp4 81.8 MB 11. Project - Dominant Color Extraction/1. Introduction.mp4 25.1 MB 11. Project - Dominant Color Extraction/2. Reading Images.mp4 24.2 MB 11. Project - Dominant Color Extraction/3. Finding Clusters.mp4 53.9 MB 11. Project - Dominant Color Extraction/4. Dominant Color Swatches.mp4 39.7 MB 11. Project - Dominant Color Extraction/5. Image in K-Colors.mp4 71 MB 12. Naive Bayes Algorithm/1. Bayes Theorem.mp4 87.3 MB 12. Naive Bayes Algorithm/10. CODE - Likelihood.mp4 166.5 MB 12. Naive Bayes Algorithm/11. CODE - Prediction.mp4 71.4 MB 12. Naive Bayes Algorithm/12. Implementing Naive Bayes - Sklearn.mp4 111.5 MB 12. Naive Bayes Algorithm/2. Derivation of Bayes Theorem.mp4 74.8 MB 12. Naive Bayes Algorithm/3. Bayes Theorem Question.mp4 145 MB 12. Naive Bayes Algorithm/4. Naive Bayes Algorithm.mp4 80.7 MB 12. Naive Bayes Algorithm/5. Naive Bayes for Text Classification.mp4 160.7 MB 12. Naive Bayes Algorithm/6. Computing Likelihood.mp4 193.2 MB 12. Naive Bayes Algorithm/7. Understanding Golf Dataset.mp4 218.7 MB 12. Naive Bayes Algorithm/7.1 golf.csv 430 B 12. Naive Bayes Algorithm/8. CODE - Prior Probability.mp4 61.1 MB 12. Naive Bayes Algorithm/9. CODE - Conditional Probability.mp4 108.1 MB 13. Multinomial Naive Bayes/1. Multinomial Naive Bayes.mp4 141.1 MB 13. Multinomial Naive Bayes/2. Laplace Smoothing.mp4 91.5 MB 13. Multinomial Naive Bayes/3. Multinomial Naive Bayes Example.mp4 179.2 MB 13. Multinomial Naive Bayes/4. Bernoulli Naive Bayes.mp4 204.7 MB 13. Multinomial Naive Bayes/5. Bernoulli Naive Bayes Example.mp4 138.3 MB 13. Multinomial Naive Bayes/6. Bias Variance Tradeoff.mp4 94.4 MB 13. Multinomial Naive Bayes/7. Gaussian Naive Bayes.mp4 109.3 MB 13. Multinomial Naive Bayes/8. CODE - Variants of Naive Bayes.mp4 93.9 MB 14. PROJECT Spam Classifier/1. Project Overview.mp4 87.4 MB 14. PROJECT Spam Classifier/2. Data Clearning.mp4 157.9 MB 14. PROJECT Spam Classifier/3. WordCloud.mp4 106.2 MB 14. PROJECT Spam Classifier/4. Text Featurization.mp4 44.2 MB 14. PROJECT Spam Classifier/5. Model Building.mp4 52.1 MB 14. PROJECT Spam Classifier/6. Model Evaluation.mp4 67.9 MB 15. Decision Trees/1. Decision Trees Introduction.mp4 78 MB 15. Decision Trees/2. Decision Trees Example.mp4 137.4 MB 15. Decision Trees/3. Entropy.mp4 118.4 MB 15. Decision Trees/4. CODE Entropy.mp4 70.1 MB 15. Decision Trees/5. Information Gain.mp4 199.5 MB 15. Decision Trees/6. CODE Split Data.mp4 135.8 MB 15. Decision Trees/7. CODE Information Gain.mp4 93.8 MB 15. Decision Trees/8. Construction of Decision Trees.mp4 66.4 MB 15. Decision Trees/9. Stopping Conditions.mp4 98.3 MB 16. Decision Trees Implementation/1. CODE - Decision Tree Node.mp4 61.2 MB 16. Decision Trees Implementation/10. Decision Trees for Regression.mp4 89.5 MB 16. Decision Trees Implementation/11. Decision Tree Code - Sklearn.mp4 36.7 MB 16. Decision Trees Implementation/2. CODE - Train Decision Tree.mp4 119.7 MB 16. Decision Trees Implementation/3. CODE - Assign Target Variable to Each Node.mp4 59.9 MB 16. Decision Trees Implementation/4. CODE - Stopping Conditions.mp4 72.4 MB 16. Decision Trees Implementation/5. CODE - Train Child Nodes.mp4 83.4 MB 16. Decision Trees Implementation/6. CODE - Explore Decision Tree Model.mp4 102.3 MB 16. Decision Trees Implementation/7. CODE - Prediction.mp4 116.4 MB 16. Decision Trees Implementation/8. Handling Numeric Features.mp4 110 MB 16. Decision Trees Implementation/9. Bias Variance Tradeoff.mp4 58.9 MB 17. PROJECT Titanic Survival Prediction/1. Project Overview.mp4 100.8 MB 17. PROJECT Titanic Survival Prediction/1.1 titanic_train.csv 58.9 KB 17. PROJECT Titanic Survival Prediction/2. Exploratory Data Analysis.mp4 83.8 MB 17. PROJECT Titanic Survival Prediction/3. Exploratory Data Analysis - II.mp4 79 MB 17. PROJECT Titanic Survival Prediction/4. Data Preparation for ML Model.mp4 83.4 MB 17. PROJECT Titanic Survival Prediction/5. Handling Missing Values.mp4 94.8 MB 17. PROJECT Titanic Survival Prediction/6. Decision Tree Model Building.mp4 77.8 MB 17. PROJECT Titanic Survival Prediction/7. Visualize Decision Tree.mp4 92.6 MB 18. Ensemble Learning Bagging/1. Ensemble Learning.mp4 69.3 MB 18. Ensemble Learning Bagging/2. Bagging Model.mp4 128.8 MB 18. Ensemble Learning Bagging/3. Why Bagging Helps.mp4 142.6 MB 18. Ensemble Learning Bagging/4. Random Forest Algorithm.mp4 118.1 MB 18. Ensemble Learning Bagging/5. Bias Variance Tradeoff.mp4 127.4 MB 18. Ensemble Learning Bagging/6. CODE Random Forest.mp4 115.6 MB 19. Ensemble Learning Boosting/1. Boosting Introduction.mp4 120.4 MB 19. Ensemble Learning Boosting/2. Boosting Intuition.mp4 133.5 MB 19. Ensemble Learning Boosting/3. Boosting Mathematical Formulation.mp4 211.5 MB 19. Ensemble Learning Boosting/4. Concept of Pseudo Residuals.mp4 152.8 MB 19. Ensemble Learning Boosting/5. GBDT Algorithm.mp4 245.2 MB 19. Ensemble Learning Boosting/6. Bias Variance Tradeoff.mp4 83.4 MB 19. Ensemble Learning Boosting/7. CODE - Gradient Boosting Decision Trees.mp4 131.6 MB 19. Ensemble Learning Boosting/8. XGBoost.mp4 119.3 MB