17 OCT 2024 - Welcome Back to TorrentFunk! Get your pirate hat back out. Streaming is dying and torrents are the new trend. Account Registration works again and so do Torrent Uploads. We invite you all to start uploading torrents again!
Book Source: https://www.manning.com/books/graph-powered-machine-learning
Video Description
I learned so much from this unique and comprehensive book. A real gem for anyone who wants to explore graph-powered ML apps.
Helen Mary Labao-Barrameda, Okada Manila
Upgrade your machine learning models with graph-based algorithms, the perfect structure for complex and interlinked data.
In Graph-Powered Machine Learning you will learn:
• The lifecycle of a machine learning project
• Graphs in big data platforms
• Data source modeling using graphs
• Graph-based natural language processing, recommendations, and fraud detection techniques
• Graph algorithms
• Working with Neo4J
Graph-Powered Machine Learning teaches to use graph-based algorithms and data organization strategies to develop superior machine learning applications. You’ll dive into the role of graphs in machine learning and big data platforms, and take an in-depth look at data source modeling, algorithm design, recommendations, and fraud detection. Explore end-to-end projects that illustrate architectures and help you optimize with best design practices. Author Alessandro Negro’s extensive experience shines through in every chapter, as you learn from examples and concrete scenarios based on his work with real clients!
About the technology
Identifying relationships is the foundation of machine learning. By recognizing and analyzing the connections in your data, graph-centric algorithms like K-nearest neighbor or PageRank radically improve the effectiveness of ML applications. Graph-based machine learning techniques offer a powerful new perspective for machine learning in social networking, fraud detection, natural language processing, and recommendation systems.
About the book
Graph-Powered Machine Learning teaches you how to exploit the natural relationships in structured and unstructured datasets using graph-oriented machine learning algorithms and tools. In this authoritative book, you’ll master the architectures and design practices of graphs, and avoid common pitfalls. Author Alessandro Negro explores examples from real-world applications that connect GraphML concepts to real world tasks.
About the audience
For readers comfortable with machine learning basics.
About the author
Alessandro Negro is Chief Scientist at GraphAware. He has been a speaker at many conferences, and holds a PhD in Computer Science.
VISITOR COMMENTS (0 )
FILE LIST
Filename
Size
0. Websites you may like/1. Get Free Premium Accounts Daily On Our Discord Server!.txt
1.3 KB
01-Part 1 Introduction.mp4
21.3 MB
02-Chapter 1 Machine learning and graphs - An introduction.mp4
69.7 MB
03-Chapter 1 Business understanding.mp4
39.1 MB
04-Chapter 1 Machine learning challenges.mp4
49.8 MB
05-Chapter 1 Performance.mp4
53.1 MB
06-Chapter 1 Graphs.mp4
33.3 MB
07-Chapter 1 Graphs as models of networks.mp4
71.3 MB
08-Chapter 1 The role of graphs in machine learning.mp4
73.8 MB
09-Chapter 2 Graph data engineering.mp4
82 MB
10-Chapter 2 Velocity.mp4
50.8 MB
11-Chapter 2 Graphs in the big data platform.mp4
49.4 MB
12-Chapter 2 Graphs are valuable for big data.mp4
43.2 MB
13-Chapter 2 Graphs are valuable for master data management.mp4
75.7 MB
14-Chapter 2 Graph databases.mp4
52.1 MB
15-Chapter 2 Sharding.mp4
70.5 MB
16-Chapter 2 Native vs. non-native graph databases.mp4
79.9 MB
17-Chapter 2 Label property graphs.mp4
37.7 MB
18-Chapter 3 Graphs in machine learning applications.mp4
65.9 MB
19-Chapter 3 Managing data sources.mp4
77.4 MB
20-Chapter 3 Detect a fraud.mp4
52.3 MB
21-Chapter 3 Recommend items.mp4
63.6 MB
22-Chapter 3 Algorithms.mp4
48.2 MB
23-Chapter 3 Find keywords in a document.mp4
53.6 MB
24-Chapter 3 Storing and accessing machine learning models.mp4
31.4 MB
25-Chapter 3 Monitoring a subject.mp4
55.5 MB
26-Chapter 3 Visualization.mp4
37.9 MB
27-Chapter 3 Leftover - Deep learning and graph neural networks.mp4