Filename Size 001.Welcome to How to win a data science competition/001. Introduction.mp4 9.7 MB 001.Welcome to How to win a data science competition/001. Introduction.srt 2.7 KB 001.Welcome to How to win a data science competition/002. Meet your lecturers.mp4 13.8 MB 001.Welcome to How to win a data science competition/002. Meet your lecturers.srt 3.6 KB 001.Welcome to How to win a data science competition/003. Course overview.mp4 34.6 MB 001.Welcome to How to win a data science competition/003. Course overview.srt 10.2 KB 002.Competition mechanics/004. Competition Mechanics.mp4 24.9 MB 002.Competition mechanics/004. Competition Mechanics.srt 10.9 KB 002.Competition mechanics/005. Kaggle Overview [screencast].mp4 32.4 MB 002.Competition mechanics/005. Kaggle Overview [screencast].srt 9.2 KB 002.Competition mechanics/006. Real World Application vs Competitions.mp4 20 MB 002.Competition mechanics/006. Real World Application vs Competitions.srt 8.7 KB 003.Recap of main ML algorithms/007. Recap of main ML algorithms.mp4 33.4 MB 003.Recap of main ML algorithms/007. Recap of main ML algorithms.srt 13.6 KB 004.Software Hardware requirements/008. Software Hardware Requirements.mp4 21.5 MB 004.Software Hardware requirements/008. Software Hardware Requirements.srt 7.9 KB 005.Feature preprocessing and generation with respect to models/009. Overview.mp4 25.7 MB 005.Feature preprocessing and generation with respect to models/009. Overview.srt 9 KB 005.Feature preprocessing and generation with respect to models/010. Numeric features.mp4 48.3 MB 005.Feature preprocessing and generation with respect to models/010. Numeric features.srt 18.6 KB 005.Feature preprocessing and generation with respect to models/011. Categorical and ordinal features.mp4 40.5 MB 005.Feature preprocessing and generation with respect to models/011. Categorical and ordinal features.srt 13.2 KB 005.Feature preprocessing and generation with respect to models/012. Datetime and coordinates.mp4 32.4 MB 005.Feature preprocessing and generation with respect to models/012. Datetime and coordinates.srt 10.2 KB 005.Feature preprocessing and generation with respect to models/013. Handling missing values.mp4 37.9 MB 005.Feature preprocessing and generation with respect to models/013. Handling missing values.srt 12.8 KB 006.Feature extraction from text and images/014. Bag of words.mp4 38 MB 006.Feature extraction from text and images/014. Bag of words.srt 13.7 KB 006.Feature extraction from text and images/015. Word2vec, CNN.mp4 46 MB 006.Feature extraction from text and images/015. Word2vec, CNN.srt 16.8 KB 007.Final project/016. Final project overview.mp4 17.8 MB 007.Final project/016. Final project overview.srt 5.4 KB 008.Exploratory data analysis/017. Exploratory data analysis.mp4 24 MB 008.Exploratory data analysis/017. Exploratory data analysis.srt 9.7 KB 008.Exploratory data analysis/018. Building intuition about the data.mp4 22.3 MB 008.Exploratory data analysis/018. Building intuition about the data.srt 9.4 KB 008.Exploratory data analysis/019. Exploring anonymized data.mp4 43 MB 008.Exploratory data analysis/019. Exploring anonymized data.srt 18.2 KB 008.Exploratory data analysis/020. Visualizations.mp4 42.6 MB 008.Exploratory data analysis/020. Visualizations.srt 16.1 KB 008.Exploratory data analysis/021. Dataset cleaning and other things to check.mp4 25.8 MB 008.Exploratory data analysis/021. Dataset cleaning and other things to check.srt 9.6 KB 009.EDA examples/022. Springleaf competition EDA I.mp4 20.1 MB 009.EDA examples/022. Springleaf competition EDA I.srt 9 KB 009.EDA examples/023. Springleaf competition EDA II.mp4 44.4 MB 009.EDA examples/023. Springleaf competition EDA II.srt 19.9 KB 009.EDA examples/024. Numerai competition EDA.mp4 22 MB 009.EDA examples/024. Numerai competition EDA.srt 7.7 KB 010.Validation/025. Validation and overfitting.mp4 34.1 MB 010.Validation/025. Validation and overfitting.srt 13.3 KB 010.Validation/026. Validation strategies.mp4 26.1 MB 010.Validation/026. Validation strategies.srt 9.1 KB 010.Validation/027. Data splitting strategies.mp4 56.2 MB 010.Validation/027. Data splitting strategies.srt 18.7 KB 010.Validation/028. Problems occurring during validation.mp4 71 MB 010.Validation/028. Problems occurring during validation.srt 25.4 KB 011.Data leakages/029. Basic data leaks.mp4 22.1 MB 011.Data leakages/029. Basic data leaks.srt 8.1 KB 011.Data leakages/030. Leaderboard probing and examples of rare data leaks.mp4 34.1 MB 011.Data leakages/030. Leaderboard probing and examples of rare data leaks.srt 12.2 KB 011.Data leakages/031. Expedia challenge.mp4 35.7 MB 011.Data leakages/031. Expedia challenge.srt 11.4 KB 012.Metrics optimization/032. Motivation.mp4 27.5 MB 012.Metrics optimization/032. Motivation.srt 10.6 KB 012.Metrics optimization/033. Regression metrics review I.mp4 46.4 MB 012.Metrics optimization/033. Regression metrics review I.srt 17.5 KB 012.Metrics optimization/034. Regression metrics review II.mp4 29.2 MB 012.Metrics optimization/034. Regression metrics review II.srt 9.5 KB 012.Metrics optimization/035. Classification metrics review.mp4 70.3 MB 012.Metrics optimization/035. Classification metrics review.srt 24.3 KB 012.Metrics optimization/036. General approaches for metrics optimization.mp4 23.7 MB 012.Metrics optimization/036. General approaches for metrics optimization.srt 8 KB 012.Metrics optimization/037. Regression metrics optimization.mp4 35.8 MB 012.Metrics optimization/037. Regression metrics optimization.srt 12.1 KB 012.Metrics optimization/038. Classification metrics optimization I.mp4 26.3 MB 012.Metrics optimization/038. Classification metrics optimization I.srt 8.9 KB 012.Metrics optimization/039. Classification metrics optimization II.mp4 25.2 MB 012.Metrics optimization/039. Classification metrics optimization II.srt 8.7 KB 013.Mean encodings/040. Concept of mean encoding.mp4 30.5 MB 013.Mean encodings/040. Concept of mean encoding.srt 9.9 KB 013.Mean encodings/041. Regularization.mp4 28.4 MB 013.Mean encodings/041. Regularization.srt 9.2 KB 013.Mean encodings/042. Extensions and generalizations.mp4 39.2 MB 013.Mean encodings/042. Extensions and generalizations.srt 12.2 KB 014.Hyperparameter tuning/043. Hyperparameter tuning I.mp4 25 MB 014.Hyperparameter tuning/043. Hyperparameter tuning I.srt 8.8 KB 014.Hyperparameter tuning/044. Hyperparameter tuning II.mp4 43.3 MB 014.Hyperparameter tuning/044. Hyperparameter tuning II.srt 15.1 KB 014.Hyperparameter tuning/045. Hyperparameter tuning III.mp4 47.2 MB 014.Hyperparameter tuning/045. Hyperparameter tuning III.srt 15.2 KB 015.Tips and tricks/046. Practical guide.mp4 59.1 MB 015.Tips and tricks/046. Practical guide.srt 22.2 KB 015.Tips and tricks/047. KazAnova's competition pipeline, part 1.mp4 33.8 MB 015.Tips and tricks/047. KazAnova's competition pipeline, part 1.srt 23.4 KB 015.Tips and tricks/048. KazAnova's competition pipeline, part 2.mp4 32 MB 015.Tips and tricks/048. KazAnova's competition pipeline, part 2.srt 21.6 KB 016.Advanced features II/049. Statistics and distance based features.mp4 21 MB 016.Advanced features II/049. Statistics and distance based features.srt 6.8 KB 016.Advanced features II/050. Matrix factorizations.mp4 24.1 MB